• @brophy@lemmy.world
    link
    fedilink
    137
    edit-2
    9 months ago

    Kids get infinite registers and no restrictions on stack ordering. Programmers are constrained to solving it with one register and restrictions on stack put operations.

    ./insert we-are-not-the-same-meme

  • @PapstJL4U@lemmy.world
    link
    fedilink
    English
    309 months ago

    Before studying CS, I recognized it as ‘the bioware puzzle’. They were probably copying their own scribbles fron back then.

    Haskell was the hardest, but it looked the most beautiful.

    • @lugal@sopuli.xyz
      link
      fedilink
      329 months ago

      Haskell was the hardest, but it looked the most beautiful.

      That pretty much sums that language up

      • DumbAceDragon
        link
        fedilink
        English
        12
        edit-2
        9 months ago

        Edit: I understand it now. That first line is just a really weird way to define a function.

        • @Knusper
          link
          fedilink
          59 months ago

          Welp, imma try myself at an explanation. Mostly cause I haven’t written Haskell in a while either.

          So, that first line:

          hanoi :: Integer -> a -> a -> a -> [(a, a)]
          

          …actually only declares the function’s type.

          In this case, it’s a function that takes an Integer and three values of a generic type a and then returns a list of tuples of those same as.
          So, those as are just any types representing the towers. Could be strings, integers, custom data types, whatever. The returned tuples represent movements between towers.

          Following that are actually two definitions of the function.

          The first definition:

          hanoi 0 _ _ _ = []
          

          …is the recursion base case. Function definitions are applied, whenever they match, being evaluated top-to-bottom.

          This line specifies that it only matches, if that first Integer is 0. It does not care what the remaining parameters are, so matches them with a wildcard _.
          Well, and to the right side of the equals sign, you’ve got the return value for the base case, an empty list.

          Then comes the more interesting line, the recursion step:

          hanoi n a b c = hanoi (n-1) a c b ++ [(a, b)] ++ hanoi (n-1) c b a
          

          This line matches for any remaining case. Those small letter names are again wildcards, but the matched value is placed into a variable with the provided name.

          And then, well, it recursively calls itself, and those ++ are list concations. This line’s only real complexity is the usual Tower Of Hanoi algorithm.

  • @stingpie@lemmy.world
    link
    fedilink
    -29 months ago

    Did you guys find this hard? There are only four possible ways to move a ring, two of which are disallowed by the rules. Out of the remaining two, one of them is simply undoing what you just did.